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ABSTRACT

Discrete Element Method (DEM) simulations are a high-fidelity computational technique used to
model granular materials, consisting of discrete particles, to uncover the underlying physics governing
various processes. However, DEM scales poorly with system size, making it computationally
intractable for simulating real-world systems. Instead, these simulations can be leveraged to inform
macro-scale models, which offer a more efficient approach to studying large-scale systems. In this
work, we plan to run DEM simulations across a range of cases, varying particle properties, grain-level
interactions, flow geometries, and system sizes to explore their effects. We will employ advanced tools
to extract meaningful coarse-scale properties from grain-scale simulations, enabling the development
of accurate macro-scale models and advancing the understanding of granular material behavior.

Keywords Discrete Element Method (DEM) · Granular Materials · Coarse Graining · Closure Models

1 Introduction and Methodology

1.1 Granular Materials

A granular material is used to refer to a collection of grains that interact with each other primarily through mutual
contact forces (Clement [1999]) and are under the influence of more general external forces (like gravity). These
systems are widespread in our physical world and of significance in a diverse array of domains. A cohesive model for
the flow of granular materials would be of great benefit to industries ranging from agriculture (in understanding how soil
particles interact under different environmental conditions), geophysics (through the modeling of snow particles for fore-
casting landslides or avalanches), and pharmaceuticals (for the industrial optimization of the transport of medicinal pills).

These materials can be described by a range of variable parameters, such as the sizes and densities (together
called the phases) of the constituent particles, the boundaries of the material, the applied external forces, the fluid
medium of dispersal, and the initial schematic configuration. To understand the complex macroscopic behaviour
of granular materials and then control their flow, we simulate the behaviour of individual particles using a famous
simulation technique known as the Discrete Element Method (DEM) (Cundall and Strack [1979]).
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1.2 Discrete Element Method (DEM) Simulations

1.2.1 Balance Laws

These simulations model the movement of particles primarily in accordance with Newton’s Second Law (and its
rotational analogue) (Guo and Curtis [2015]). For a dry material, for any particle i, in translational motion,

mi
dvi

dt
= Fcf

i +mig + Ffp
i

0

and in the rotational motion case, with the inertia tensor Ii,

Ii
dωi

dt
− (Ii · ωi)× ωi = τ i

are the laws followed. Here vi and ωi are the translational and angular velocities, respectively. mi is i’s mass, and
g is gravitational acceleration as usual. Fcf

i is the net contact force between i and surrounding particles, and Ffp
i is

the fluid-particle contact force, and finally the torque applied that induces rotational motion in i is τ i. In the DEM
technique, the progression of some of these physical quantities (in particular, the velocities and contact forces) is
traceable through the time integration of the equations of motion using the computational sequence produced in the
simulation. For the DEM distribution we use, LAMMPS (Thompson et al. [2022]), the velocities and contact forces are
approximated using current & historic positions with the Verlet scheme (Plimpton [1995]), discussed in Appendix A.1.

1.2.2 Contact Force Model

The total contact force Fcf
i acting on particle i due to its interactions with other particles is decomposed into normal and

tangential components arising from pairwise contacts. In our LAMMPS implementation, these are calculated according to
a linear spring-dashpot model with frictional history (through the pair_style gran/hooke/history flag):

Fcf
i =

∑
j ̸=i

(
Fn

ij + Ft
ij

)
Here, the normal (Fn

ij) and tangential (Ft
ij) contact forces between particles i and j are calculated as

Fn
ij = knδijnij − γnv

n
ij ,

Ft
ij = −ktξij − γtv

t
ij ,

where kn and kt are the normal and tangential stiffness coefficients, γn and γt are the corresponding damping
coefficients, δij , the overlap distance, is a measure of the extent of the two particles’ surface penetration. For i at
position xi with radius Ri and j at xj with radius Rj , δij = (Ri +Rj)− ||xi − xj||, nij is the unit vector along the
line joining the centers of i and j, vn

ij and vt
ij are the relative normal and tangential velocities, and ξij is the tangential

displacement accumulated during the contact. In the exact (and continuous) form, at current time t = tc, for an impact
beginning at t = t0, for the accumulated tangential displacement we have:

ξij =

∫ tc

t0

vt
ij(t)dt

The discretisation scheme for this integral follows a simple forward Euler sum discussed in Appendix A.1.

The tangential force is capped by a Coulomb friction criterion:

|Ft
ij | ≤ µ|Fn

ij |,

where µ is the coefficient of friction between i and j, beyond which sliding occurs, and Ft
ij is projected back onto the

Coulomb limit as detailed (see Mindlin and Deresiewicz [1953]). The torque on particle i from tangential forces is

τ i =
∑
j ̸=i

Ri nij × Ft
ij ,

where Ri is the radius of particle i.



3 Discrete element simulations to learn closure models for granular flows

1.3 DEM Output Data

These simulations provide us with the evolution of individual atoms’ positions, velocities, and their Virial Stress tensor
(Bagi [1999]) throughout the flow. Briefly, in discrete element analysis, the virial stress tensor measures the stress faced
by individual particles that arises from the pairwise sum of the particle’s interactions with surrounding particles. For
particle i, at ri and any j at rj , we have

svirial
i = − 1

2Vi

∑
j ̸=i

(ri − rj) ⊗ Fcf
ij


where ⊗ is the standard outerproduct that induces a tensor and Fcf

ij = (Fn
ij + Ft

ij). A snapshot of the format of
the dump files from LAMMPS is provided in Appendix A.2. Note, however, that data on individual particles’ physical
properties provide us with little insight into the general behaviour of the flow. We undertake the averaging procedure of
coarse-graining the particulate data to produce data for the physical fields inside the container (Shaebani et al. [2011]).

1.4 Coarse Graining DEM Data

The synergistic application of DEM and coarse-graining (together, and more generally, the DEM-CFD routine) has given
rise to a very rich subset of literature. Coarse-graining is a modelling procedure aimed at extracting continuum-level
fields from the discretised data generated from DEM simulations. The essence of the technique is to consolidate (or bin)
a large number of small particles (say N particles) over some volume (or region) into a smaller number of grains. With
a smoothing kernel φ (typically Gaussian or Lucy), say the center of some bin is zk with volume Vbin, then for any
material property field A, the total sum of convolution integrals:

A(zk) =
1

N (zk)

N∑
i=1

∫
Ai(z

′)φ(zk − z′)dz′

Here N (zk) is the normalisation term (dependent on whether the material field is intensive or extensive). In practice,
the integral is approximated by discretising the bins into grids and evaluating the total sum across all grid points. Then,
for m grid points, for a volume-weighted field,

A(zk) =
1

Vbin

N∑
i=1

m∑
j=1

(
Vij

Vi

)
Aiφ(zk − zj)

An important volume weighted field is the Cauchy-stress tensor σαβ(r) along the α, β ∈ {x, y, z} components of stress,
with r being the position vector for any point. In our coarse-graining procedure, this field is defined as

σαβ(rk) =
1

2Vbin

 N∑
i=1

m∑
j=1

svirial, eff
i,αβ φ(rk − rj)

 =
1

2Vbin

 N∑
i=1

m∑
j=1

(
Vij

Vi

)
Fcf,α

ij rβijφ(rk − rj)


We assume the boundaries along x and y axes to be periodic (see schematic). This enforces statistical homogenization
along these axes, so we may resolve to the z axis only Goldhirsch [2010]. Then, the expression for the equivalent stress
field becomes

σαβ(z) =
1

2Abin

 N∑
i=1

m∑
j=1

Fcf,α
ij rβijφ(zk − zj)


See Appendix A.3. for more details on the exact coarse-graining expressions used for different fields, and also a proof
of why the smoothing kernel is required to preserve properties (for example, conservation of mass).
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2 Results
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In the first flow, we can see Vx increase linearly as we approach the top (the source of the shear). Additionally, we see
that σzz is nearly constant (in the absence of gravity). Also, σxx has a very high value relative to σzz (and along other
stress components), this is obviously expected given the shear is applied along the x-axis. For the same reason, in
Appendix A.4., we can see that Vy, Vz are effectively zero whereas Vx is orders of magnitude larger throughout the top
half of the container. However, as we approach the bottom (lower values of z), Vx approaches zero linearly.

In the second flow, we can see that the reduction in velocity as we go deeper into the container is no longer
linear. Beyond a depth of just 10m, it’s as if the particles at the bottom have no information about the shear applied on
the top. This time, due to the presence of gravity, we see a linear (and increasing in magnitude) σzz with increasing
depth, whereas σxx shows a jump at the bottom.

3 Future Work

3.1 More Granular Flows

In the coming weeks, we will simulate and coarse-grain two more flows. One is when the particles are simply under the
action of gravity on an incline, instead of having a lower boundary. The other is similar to our second flow in the results,
except that there are now two different types of particles with varying sizes.

3.2 Neural Operators

A neural operator is designed to learn mappings between function spaces (G : A → B), such as those arising in physical
systems, where A and B are spaces of functions (e.g., velocity fields, stress fields, etc.). Given a dataset of input-output
pairs {(ai, bi)}Ni=1 constructed through the coarse graining process, with ai ∈ A and bi ∈ B, the neural operator
approximates the true physical operator (underlying constitutive model) G∗ via a parameterized model Gθ:

Gθ : a 7→ b

The learning objective is to minimise the expected loss between predicted and true output fields:

L(θ) = E(a,b)∼D [ℓ (Gθ(a), b)]

where ℓ(·, ·) is a suitable loss function (e.g., mean squared error), and D is the data distribution (Li et al. [2021]).
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Appendix

A.1. Integration Schemes for different physical quantities

The equations of motion for both translation and rotation are integrated using the Verlet algorithm, as implemented in
LAMMPS via the fix nve/sphere command. For each timestep ∆t, the algorithm proceeds as follows:

1. Translational and Angular velocity half step update:

vi

(
t+

∆t

2

)
= vi(t) +

∆t

2mi
Ftot

i (t),

ωi

(
t+

∆t

2

)
= ωi(t) +

∆t

2
I−1
i τ i(t),

where Ftot
i (t) in our case is just contact (and gravity).

2. Position and angular orientation update:

xi(t+∆t) = xi(t) + vi

(
t+

∆t

2

)
∆t,

θi(t+∆t) = θi(t) + ωi

(
t+

∆t

2

)
∆t.

The contact forces Fcf
i (t + ∆t) and torques τ i(t + ∆t) at the next time step are calculated using then

expressions in the previous section with these new approximate (full-step) positions and (half-step) velocities.
Finally,

3. Full-step translational and angular velocity update:

vi(t+∆t) = vi

(
t+

∆t

2

)
+

∆t

2mi
Ftot

i (t+∆t),

ωi(t+∆t) = ωi

(
t+

∆t

2

)
+

∆t

2
I−1
i τ i(t+∆t).

This explicit, second-order accurate scheme ensures stable and efficient integration of the particle trajectories and
rotations, provided the timestep ∆t is chosen to be much smaller than the characteristic collision time of the particles.
The tangential displacement vector between contacting particles i and j at time t+∆t is updated using the forward
Euler scheme as follows:

ξij(t+∆t) = ξij(t) + vt
ij ∆t

A.2. DEM Data Format

ID Type x y z vx vy vz Diam. Mass σxx σyy σzz σyz σzx σxy

1 2 0.00048 -0.00363 0.00048 0 0 0 0.00096 1.13e-6 -3.87e-7 -1.59e-6 -1.53e-6 -6.14e-8 3.11e-8 . . .
2 2 0.00141 -0.00391 0.00040 0 0 0 0.00080 6.69e-7 -2.95e-8 -2.34e-7 -8.79e-8 7.60e-8 -4.63e-8 . . .
3 2 0.00210 -0.00334 0.00046 0 0 0 0.00092 1.00e-6 -1.24e-6 -8.01e-7 -2.16e-6 1.60e-7 -3.89e-7 . . .
4 2 0.00302 -0.00345 0.00047 0 0 0 0.00094 1.05e-6 -1.69e-7 -6.78e-7 9.00e-9 4.12e-8 -5.78e-9 . . .
5 2 0.00393 -0.00375 0.00046 0 0 0 0.00093 1.03e-6 -5.56e-7 -5.03e-7 -4.86e-7 3.51e-7 2.10e-7 . . .
6 2 0.00491 -0.00335 0.00043 0 0 0 0.00086 8.07e-7 -6.34e-7 -1.23e-6 -8.63e-7 1.71e-7 -5.99e-8 . . .
7 2 0.00612 -0.00358 0.00039 0 0 0 0.00077 5.93e-7 -5.63e-7 -2.83e-7 -1.81e-7 -1.53e-7 3.30e-8 . . .

10 2 0.00734 -0.00371 0.00036 0 0 0 0.00071 4.68e-7 -3.29e-7 -2.45e-7 1.67e-8 -2.29e-7 -1.53e-8 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...



8 Discrete element simulations to learn closure models for granular flows

A.3. Coarse Graining for different property fields and Kernel

Smoothing Kernel

Let the coarse-grained mass density field ρ(r) be defined as:

ρ(r) =

N∑
i=1

mi φ(r− ri)

where φ(r) is a smoothing kernel satisfying: ∫∫∫
φ(r) dV = 1

Then, the total mass in the domain is given by:

M =

∫∫∫
ρ(r) dV =

∫∫∫ ( N∑
i=1

mi φ(r− ri)

)
dV

Switching the summation and integration:

M =

N∑
i=1

mi

(∫∫∫
φ(r− ri) dV

)

By a change of variables r′ = r− ri, the integral becomes:∫∫∫
φ(r− ri) dV =

∫∫∫
φ(r′) dV = 1

Hence:

M =

N∑
i=1

mi

The total coarse-grained mass equals the sum of particle masses. Thus, mass is conserved iff the kernel is normalised:∫∫∫
φ(r) dV = 1

Summary Table

Field Coarse Graining Procedure

ϕ(zk)
1

Vbin

∑
i,j

Vijφ(zk − zj)

v(zk)

∑
i,j

(
Vij

Vi

)
viφ(zk − zj)∑

i,j

(
Vij

Vi

)
φ(zk − zj)

σαβ(zk)
1

2Vbin

∑
i,j

(
Vij

Vi

)
Fcf,α

ij rβij φ(zk − zj)

P (zk) −1

3
(σxx(zk) + σyy(zk) + σzz(zk))
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A.4. Other Plots

Flow 1
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Flow 2

NOTE: In these preliminary plots, “x(m)" on the x-axis is really just 40− z
(i.e. these have the origin translated to the top of the container).
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